VRS

Proyecto de estudio del Virus Respiratorio Sincitial (VRS)

Problemática del VRS

El virus respiratorio sincitial (VRS) es el agente causal más frecuente de las infecciones del tracto respiratorio inferior en menores de dos años, fundamentalmente bronquiolitis y neumonías. El VRS provoca epidemias anuales entre noviembre y marzo, con alguna variación interanual. Además coincide en el tiempo con otras infecciones que provocan un exceso de hospitalización, como la gripe y los rotavirus, lo que conlleva una verdadera congestión del sistema sanitario prácticamente todos los años. Además, dado que la transmisión del virus es fácil entre sujetos, las infecciones intrahospitalarias o nosocomiales son muy frecuentes.

En España se estima que la patología que provoca en el niño pequeño genera entre 15.000 y 20.000 consultas en atención primaria anualmente. En la Comunidad Valenciana ingresan anualmente 1.500 niños por bronquiolitis por VRS con una duración media de la hospitalización de 6 días. Esto supone un coste sanitario superior a los 3 millones y medio de euros anuales únicamente en hospitalizaciones pediátricas. Para la estimación del coste total de la enfermedad en pediatría habría que añadir el coste de las consultas en primaria y los costes indirectos o sociales.

Por todo ello se necesitan herramientas que permitan adecuar las necesidades sanitarias, establecer marcadores y predictores de las epidemias de forma que desde la Salud Pública se puedan establecer las estrategias de contención de la infección y preparación del sistema sanitario. También se están estudiando diversas aproximaciones para la obtención de vacunas, cuyas mayores limitaciones son la necesidad de obtener una respuesta inmune protectora en edades muy tempranas, cuando el sistema inmunitario está todavía poco desarrollado, y sobre todo la necesidad de modular esta respuesta inmune ya que gran parte de la patogenia de la enfermedad se debe no a la infección per se sino a una respuesta inmunitaria anómala del lactante.

Modelado del virus

Esta problemática nos lleva a proponer el desarrollo de un modelo dinámico de la transmisión e infección del VRS que se ajuste a datos reales de hospitalizaciones de menores de un año por VRS en la Comunidad Valenciana. Una vez establecido el modelo, diseñar diversas estrategias de prevención, incluida la vacunación, estudiar su efectividad y hacer análisis farmacoeconómicos, con el objetivo de obtener las estrategias más eficientes para reducir la incidencia de la enfermedad. Finalmente, proponer pautas de salud pública y extender el modelo a datos de toda España.

El equipo que está trabajando en esta enfermedad ha desarrollado un modelo de redes que simula mejor el contacto entre personas y la transmisión del VRS que los modelos desarrollados previamente. Partimos de la división de la población en las posibles situaciones que puede tener un individuo respecto a la enfermedad: susceptible o sano, infeccioso o enfermo y recuperado, con transiciones entre las situaciones como se ven en la figura siguiente (modelo SIRS).

Después construimos una red o grafo en la que cada nodo es un individuo con unas caractersticas propias e independientes del resto (edad, estado de salud, sexo, etc.). Las aristas entre los nodos representan las relaciones entre los individuos a través de las cuales la enfermedad se transmite. Si a la hora de construir la red asignamos las relaciones entre nodos de forma aleatoria decimos entonces que tenemos una red aleatoria (random network). Además, dependiendo de la distribución de probabilidad utilizada para asignar las relaciones entre nodos, tendremos distintos tipos de redes aleatorias (de Poisson, exponencial, potencial). Una vez que tenemos definida la red de relaciones y las reglas de evolución de la enfermedad podemos simular el modelo estudiando, individuo a individuo, las relaciones que tiene y cómo le afectan. Con esta aproximación es sencillo estudiar situaciones tales como el comportamiento de la enfermedad si se vacuna a un grupo concreto de la población (sólo a los niños, sólo a ancianos), o si se aplica cierta terapia a ciertos enfermos concretos. Podemos ver esto en la figura siguiente.



El inconveniente de este tipo de modelos es que la estimación de parámetros (lo que llamamos "ajuste del modelo") es computacionalmente muy costosa. Excepto en algunos casos muy concretos, el proceso de ajuste implica una búsqueda exhaustiva por fuerza bruta. Eso quiere decir que debemos probar cada posible combinación de parámetros (en nuestro caso son la tasa de infección, el número de relaciones y el tiempo de recuperación tras la enfermedad), correspondiendo cada una de estas combinaciones a un problema o modelo distinto. La prueba o "evolución" del modelo consiste en analizar, día a día a lo largo de varios años, qué le ocurre a cada individuo, si se pone enfermo, si se recupera, si muere, si nace, etc. Después hay que analizar los resultados y ver cómo de bien o de mal se acercan a los valores reales y conocidos.

En la práctica esto hace que los modelos de redes se usen con grandes limitaciones, como tener que reducir el tamaño de la red (en nodos y/o en relaciones) o restringir los intervalos de exploración para los parámetros de ajuste. Un buen ejemplo puede ser un modelo que pretenda abarcar a toda la población de España (unos 45.000.000 nodos). Una red así es tan grande que lo que se hace habitualmente es usar, digamos 10.000 o 100.000 nodos y extrapolar los resultados, algo algunas veces válido pero otras muchas, cuanto menos, discutible.

El objetivo final es, una vez validado y perfeccionado el modelo, probar diversas estrategias de vacunación y su efecto en la evolución de la enfermedad y estudiar la relación coste/beneficio de cada estrategia.

Fases del proyecto

En el proyecto VRS hemos utilizado la computación distribuida para poder calcular los modelos en un tiempo razonable, diseñando el proceso de cálculo en tres fases.

Fase I: Ajuste primario

En esta fase hacemos la búsqueda "gruesa" de aquellos parámetros de tasas de contagio y número de relaciones que más acerquen el modelo a la realidad. Utilizamos el sistema de cómputo distribuido propietario SÍSIFO, adecuado para pequeñas redes de computación en redes locales. Empleamos un número variable de ordenadores (unos 20 de manera habitual con picos de unos 100 durante fines de semana) y calculamos en unas tres semanas aproximadamente 60.000 modelos de 1.000.000 nodos, sumando unos 3 años de tiempo de CPU. Obtenemos unos resultados interesantes y damos con un modelo que es capaz de imitar razonablemente la evolución del virus.

Fase II: Ajuste secundario

En esta fase hacemos la búsqueda "fina" de aquellos parámetros de tasas de contagio, número de relaciones y tiempos de inmunidad del modelo. Esto es así para determinar la manera en la que afecta al contagio de la enfermedad el tiempo que los sujetos tardan en volver a ser susceptibles tras haberse recuperado. Implica el cálculo de unos 140.000 modelos de 1.000.000 nodos cada uno, y su envergadura es mayor que la que nuestro sistema SÍSIFO puede abordar. Por ello procedemos a desplegar un servidor BOINC propio para el proyecto VRS. En la figura siguiente podemos ver la evolución de los cálculos:



Del 18/05 al 26/06 empezamos los cálculos con ordenadores del CES Felipe II y del IMM de la U.P.V. pero la potencia de cálculo no es suficiente y necesitaríamos casi 8 meses para terminar todos los modelos. El 27/06 hacemos público el proyecto a la comunidad BOINC y el boca a boca hace el resto. En las siguientes 3 semanas llegamos a tener unos 850 equipos activos conectados y calculamos todos los problemas que teníamos pendientes, acumulando al final unos 21 años de tiempo de CPU y unos 500 Gigabytes de datos para analizar.

Fase III: Ajuste terciario

En esta fase usamos el modelo más preciso que hayamos obtenido en la Fase II para evaluar distintas estrategias de vacunación. Esperamos abordarla en septiembre, de momento está por determinar si necesitaremos usar computación distribuida de nuevo.

Agradecimientos

Queremos agradecer a la comunidad BOINC en general y a la hispana en particular, con CANAL@BOINC a la cabeza y seguidos de TitanesDC, el apoyo demostrado. Aunque la lista es mucho más larga (y está disponible en el apartado de estadísticas del proyecto), destacamos todos aquellos equipos que han superado los 10.000 créditos:

1 Team Starfire World BOINC

2 SETI.USA

3 CANAL@Boinc

4 Crunchers@Freiburg

5 BOINC@Poland

6 SeriousCrunchers

7 TitanesDC

8 SETI.Germany

9 BOINC@MIXI

10 AMD Users

11 Team 2ch

12 SaveTheWorld

13 L’Alliance Francophone

14 BOINC@Heidelberg

15 Free-DC

16 The Knights Who Say Ni!

17 Team Norway

18 Team England (Boinc)

Leave a Reply

You must be logged in to post a comment.